Development and validation of a prediction model for tuberculous pleural effusion: a large cohort study and external validation

Author:

Liu Yanqing,Liang Zhigang,Yuan Songbo,Wang Shanshan,Guo Fei,Peng Weidong,Yang Jing,Wu Aihua

Abstract

Abstract Background Distinguishing tuberculous pleural effusion (TPE) from non-tuberculosis (TB) benign pleural effusion (BPE) remains to be a challenge in clinical practice. The aim of the present study was to develop and validate a novel nomogram for diagnosing TPE. Methods In this retrospective analysis, a total of 909 consecutive patients with TPE and non-TB BPE from Ningbo First Hospital were divided into the training set and the internal validation set at a ratio of 7:3, respectively. The clinical and laboratory features were collected and analyzed by logistic regression analysis. A diagnostic model incorporating selected variables was developed and was externally validated in a cohort of 110 patients from another hospital. Results Six variables including age, effusion lymphocyte, effusion adenosine deaminase (ADA), effusion lactatedehy drogenase (LDH), effusion LDH/effusion ADA, and serum white blood cell (WBC) were identified as valuable parameters used for developing a nomogram. The nomogram showed a good diagnostic performance in the training set. A novel scoring system was then established based on the nomogram to distinguish TPE from non-TB BPE. The scoring system showed good diagnostic performance in the training set [area under the curve (AUC) (95% confidence interval (CI)), 0.937 (0.917–0.957); sensitivity, 89.0%, and specificity, 89.5%], the internal validation set [AUC (95%CI), 0.934 (0.902–0.966); sensitivity, 88.7%, and specificity, 90.3%], and the external validation set [(AUC (95%CI), 0.941 (0.891–0.991); sensitivity, 93.6%, and specificity, 87.5%)], respectively. Conclusions The study developed and validated a novel scoring system based on a nomogram originated from six clinical parameters. The novel scoring system showed a good diagnostic performance in distinguishing TPE from non-TB BPE and can be conveniently used in clinical settings.

Funder

Medical Science and Technology Project of Zhejiang Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3