Author:
van Zelst Cathelijne M.,Goossens Lucas M. A.,Witte Jan A.,Braunstahl Gert-Jan,Hendriks Rudi W.,Rutten-van Molken Maureen P. M. H.,Veen Johannes C. C. M. in’t
Abstract
Abstract
Background
The global initiative for chronic obstructive lung disease (GOLD) 2020 emphasizes that there is only a weak correlation between FEV1, symptoms and impairment of the health status of patients with chronic obstructive pulmonary disease (COPD). Various studies aimed to identify COPD phenotypes by cluster analyses, but behavioral aspects besides smoking were rarely included.
Methods
The aims of the study were to investigate whether (i) clustering analyses are in line with the classification into GOLD ABCD groups; (ii) clustering according to Burgel et al. (Eur Respir J. 36(3):531–9, 2010) can be reproduced in a real-world COPD cohort; and (iii) addition of new behavioral variables alters the clustering outcome. Principal component and hierarchical cluster analyses were applied to real-world clinical data of COPD patients newly referred to secondary care (n = 155). We investigated if the obtained clusters paralleled GOLD ABCD subgroups and determined the impact of adding several variables, including quality of life (QOL), fatigue, satisfaction relationship, air trapping, steps per day and activities of daily living, on clustering.
Results
Using the appropriate corresponding variables, we identified clusters that largely reflected the GOLD ABCD groups, but we could not reproduce Burgel’s clinical phenotypes. Adding six new variables resulted in the formation of four new clusters that mainly differed from each other in the following parameters: number of steps per day, activities of daily living and QOL.
Conclusions
We could not reproduce previously identified clinical COPD phenotypes in an independent population of COPD patients. Our findings therefore indicate that COPD phenotypes based on cluster analysis may not be a suitable basis for treatment strategies for individual patients.
Funder
Teva Pharmaceutical Industries
Chiesi Farmaceutici
Boehringer Ingelheim
AstraZeneca Foundation
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2020 report). https://goldcopd.org/; 2020.
2. Agusti A, Calverley PM, Celli B, Coxson HO, Edwards LD, Lomas DA, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res. 2010;11:122.
3. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010;182(5):598–604.
4. Nikolaou V, Massaro S, Fakhimi M, Stergioulas L, Price D. COPD phenotypes and machine learning cluster analysis: a systematic review and future research agenda. Respir Med. 2020;171: 106093.
5. Minnesota Uo. Cluster analysis: basic concepts and algorithms, chapter 8. In: Book KD, editor. Computer Science and Engineering. https://www-users.cs.umn.edu/~kumar001/dmbook/ch8.pdf.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献