A comprehensive study on machine learning models combining with oversampling for bronchopulmonary dysplasia-associated pulmonary hypertension in very preterm infants

Author:

Wang Dan,Huang Shuwei,Cao Jingke,Feng Zhichun,Jiang Qiannan,Zhang Wanxian,Chen Jia,Kutty Shelby,Liu Changgen,Liao Wenyu,Zhang Le,Zhu Guli,Guo Wenhao,Yang Jie,Liu Lin,Yang Jingwei,Li Qiuping

Abstract

Abstract Background Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH) remains a devastating clinical complication seriously affecting the therapeutic outcome of preterm infants. Hence, early prevention and timely diagnosis prior to pathological change is the key to reducing morbidity and improving prognosis. Our primary objective is to utilize machine learning techniques to build predictive models that could accurately identify BPD infants at risk of developing PH. Methods The data utilized in this study were collected from neonatology departments of four tertiary-level hospitals in China. To address the issue of imbalanced data, oversampling algorithms synthetic minority over-sampling technique (SMOTE) was applied to improve the model. Results Seven hundred sixty one clinical records were collected in our study. Following data pre-processing and feature selection, 5 of the 46 features were used to build models, including duration of invasive respiratory support (day), the severity of BPD, ventilator-associated pneumonia, pulmonary hemorrhage, and early-onset PH. Four machine learning models were applied to predictive learning, and after comprehensive selection a model was ultimately selected. The model achieved 93.8% sensitivity, 85.0% accuracy, and 0.933 AUC. A score of the logistic regression formula greater than 0 was identified as a warning sign of BPD-PH. Conclusions We comprehensively compared different machine learning models and ultimately obtained a good prognosis model which was sufficient to support pediatric clinicians to make early diagnosis and formulate a better treatment plan for pediatric patients with BPD-PH.

Funder

The science and technology innovation Program of Hunan Province

Hunan Province Natural Science Foundation Youth Project

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3