Dysfunctional lactate metabolism in human alveolar type II cells from idiopathic pulmonary fibrosis lung explant tissue

Author:

Newton Danforth A.,Lottes Robyn G.,Ryan Rita M.,Spyropoulos Demetri D.,Baatz John E.ORCID

Abstract

Abstract Background Idiopathic Pulmonary Fibrosis (IPF) is the most common and progressive form of the interstitial lung diseases, leading most patients to require lung transplants to survive. Despite the relatively well-defined role of the fibroblast in the progression of IPF, it is the alveolar type II epithelial cell (AEC2) that is now considered the initiation site of damage, driver of disease, and the most efficacious therapeutic target for long-term resolution. Based on our previous studies, we hypothesize that altered lactate metabolism in AEC2 plays a pivotal role in IPF development and progression, affecting key cellular and molecular interactions within the pulmonary microenvironment. Methods AEC2s isolated from human patient specimens of non-fibrotic and IPF lungs were used for metabolic measurements, lactate dehydrogenase (LDH) analyses and siRNA-mediated knockdown experiments. Results AEC2s isolated from human IPF lung explant tissues had lower rates of oxidative metabolism and were more glycolytic lactate-producing cells than were AEC2 from control, non-fibrotic lung explant tissues. Consistent with this shift in metabolism, patient-derived IPF AEC2s exhibited LDH tetramers that have higher ratios of LDHA:LDHB (i.e., favoring pyruvate to lactate conversion) than control AEC2s. Experimental manipulation of LDHA subunit expression in IPF AEC2s restored the bioenergetic profile characteristic of AEC2 from non-fibrotic lungs. Conclusions These results are consistent with the concept that altered lactate metabolism may be an underlying feature of AEC2 dysfunction in IPF and may be a novel and important target for therapeutic treatment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3