Author:
Akenroye Ayobami,Nopsopon Tanawin,Cho Laura,Moll Matthew,Weiss Scott T.
Abstract
Abstract
Introduction
Biomarkers are needed to inform the choice of biologic therapy in patients with asthma given the increasing number of biologics. We aimed to identify proteins associated with response to omalizumab and mepolizumab.
Methods
Aptamer-based proteomic profiling (SomaScan) was used to assess 1437 proteins from 51 patients with moderate to severe asthma who received omalizumab (n = 29) or mepolizumab (n = 22). Response was defined as the change in asthma-related exacerbations in the 12 months following therapy initiation. All models were adjusted for age, sex, and pre-treatment exacerbation rate. Additionally, body mass index was included in the omalizumab model and eosinophil count in the mepolizumab model. We evaluated the association between molecular signatures and response using negative binomial regression correcting for the false discovery rate (FDR) and gene set enrichment analyses (GSEA) to identify associated pathways.
Results
Over two-thirds of patients were female. The average age for omalizumab patients was 42 years and 57 years for mepolizumab. At baseline, the average exacerbation rate was 1.5/year for omalizumab and 2.4/year for mepolizumab. Lower levels of LOXL2 (unadjusted p: 1.93 × 10E−05, FDR-corrected: 0.028) and myostatin (unadjusted: 3.87 × 10E−05, FDR-corrected: 0.028) were associated with better response to mepolizumab. Higher levels of CD9 antigen (unadjusted: 5.30 × 10E−07, FDR-corrected: 0.0006) and MUC1 (unadjusted: 1.15 × 10E−06, FDR-corrected: 0.0006) were associated with better response to omalizumab, and LTB4R (unadjusted: 1.12 × 10E−06, FDR-corrected: 0.0006) with worse response. Protein–protein interaction network modeling showed an enrichment of the TNF- and NF-kB signaling pathways for patients treated with mepolizumab and multiple pathways involving MAPK, including the FcER1 pathway, for patients treated with omalizumab.
Conclusions
This study provides novel fundamental data on proteins associated with response to mepolizumab or omalizumab in severe asthma and warrants further validation as potential biomarkers for therapy selection.
Funder
Harvard Medical School
Brigham and Women’s Hospital Minority Faculty Career Development Award
National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC