Lower myostatin and higher MUC1 levels are associated with better response to mepolizumab and omalizumab in asthma: a protein–protein interaction analyses

Author:

Akenroye Ayobami,Nopsopon Tanawin,Cho Laura,Moll Matthew,Weiss Scott T.

Abstract

Abstract Introduction Biomarkers are needed to inform the choice of biologic therapy in patients with asthma given the increasing number of biologics. We aimed to identify proteins associated with response to omalizumab and mepolizumab. Methods Aptamer-based proteomic profiling (SomaScan) was used to assess 1437 proteins from 51 patients with moderate to severe asthma who received omalizumab (n = 29) or mepolizumab (n = 22). Response was defined as the change in asthma-related exacerbations in the 12 months following therapy initiation. All models were adjusted for age, sex, and pre-treatment exacerbation rate. Additionally, body mass index was included in the omalizumab model and eosinophil count in the mepolizumab model. We evaluated the association between molecular signatures and response using negative binomial regression correcting for the false discovery rate (FDR) and gene set enrichment analyses (GSEA) to identify associated pathways. Results Over two-thirds of patients were female. The average age for omalizumab patients was 42 years and 57 years for mepolizumab. At baseline, the average exacerbation rate was 1.5/year for omalizumab and 2.4/year for mepolizumab. Lower levels of LOXL2 (unadjusted p: 1.93 × 10E−05, FDR-corrected: 0.028) and myostatin (unadjusted: 3.87 × 10E−05, FDR-corrected: 0.028) were associated with better response to mepolizumab. Higher levels of CD9 antigen (unadjusted: 5.30 × 10E−07, FDR-corrected: 0.0006) and MUC1 (unadjusted: 1.15 × 10E−06, FDR-corrected: 0.0006) were associated with better response to omalizumab, and LTB4R (unadjusted: 1.12 × 10E−06, FDR-corrected: 0.0006) with worse response. Protein–protein interaction network modeling showed an enrichment of the TNF- and NF-kB signaling pathways for patients treated with mepolizumab and multiple pathways involving MAPK, including the FcER1 pathway, for patients treated with omalizumab. Conclusions This study provides novel fundamental data on proteins associated with response to mepolizumab or omalizumab in severe asthma and warrants further validation as potential biomarkers for therapy selection.

Funder

Harvard Medical School

Brigham and Women’s Hospital Minority Faculty Career Development Award

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3