Impaired AT2 to AT1 cell transition in PM2.5-induced mouse model of chronic obstructive pulmonary disease

Author:

Yu Hongjiao,Lin Yingnan,Zhong Yue,Guo Xiaolan,Lin Yuyin,Yang Siqi,Liu Jinglin,Xie Xinran,Sun Yaowei,Wang Dong,Li Bing,Ran Pixin,Dai Jianwei

Abstract

Abstract Background Particular matter 2.5 (PM2.5) is one of the most important air pollutant, and it is positively associated with the development of chronic obstructive pulmonary disease (COPD). However, the precise underlying mechanisms through which PM2.5 promotes the development of COPD remains largely unknown. Methods Mouse alveolar destruction were determined by histological analysis of lung tissues and lung function test. Alveolar type II cells (AT2) to alveolar type I cells (AT1) transition in PM2.5-induced COPD mouse model was confirmed via immunofluorescence staining and qPCR analysis. The differentially expressed genes in PM2.5-induced COPD mouse model were identified by RNA-sequencing of alveolar epithelial organoids and generated by bioinformatics analysis. Results In this study, we found that 6 months exposure of PM2.5 induced a significantly decreased pulmonary compliance and resulted in pulmonary emphysema in mice. We showed that PM2.5 exposure significantly reduced the AT2 to AT1 cell transition in vitro and in vivo. In addition, we found a reduced expression of the intermediate AT2-AT1 cell process marker claudin 4 (CLDN4) at day 4 of differentiation in mouse alveolar organoids treated with PM2.5, suggesting that PM2.5 exposure inhibited AT2 cells from entering the transdifferentiation process. RNA-sequencing of mouse alveolar organoids showed that several key signaling pathways that involved in the AT2 to AT1 cell transition were significantly altered including the Wnt signaling, MAPK signaling and signaling pathways regulating pluripotency of stem cells following PM2.5 exposure. Conclusions In summary, these data demonstrate a critical role of AT2 to AT1 cell transition in PM2.5-induced COPD mouse model and reveal the signaling pathways that potentially regulate AT2 to AT1 cell transition during this process. Our findings therefore advance the current knowledge of PM2.5-induced COPD and may lead to a novel therapeutic strategy to treat this disease.

Funder

Project of the State Key Laboratory of Respiratory Disease, Guangzhou Medical University

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province, China

Publisher

Springer Science and Business Media LLC

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3