Abstract
Abstract
Background
Intermittent hypoxia induces increased ventilatory responses in a 5-HT-dependent manner. This study aimed to explore that effect of raphe magnus serotonin 1A receptor (5-HT1A) receptor on the increased ventilatory responses induced by intermittent hypoxia.
Methods
Stereotaxic surgery was performed in adult male rats, and acute and chronic intermittent hypoxia models were established after recovery from surgery. The experimental group received microinjections of 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into the raphe magnus nucleus (RMg). Meanwhile, the control group received microinjections of artificial cerebrospinal fluid instead of 8-OH-DPAT. Ventilatory responses were compared among the different groups of oxygen status. 5-HT expressions in the RMg region were assessed by immunohistochemistry after chronic intermittent hypoxia.
Results
Compared with the normoxia group, the acute intermittent hypoxia group exhibited higher ventilatory responses (e.g., shorter inspiratory time and higher tidal volume, frequency of breathing, minute ventilation, and mean inspiratory flow) (P < 0.05). 8-OH-DPAT microinjection partly weakened these changes in the acute intermittent hypoxia group. Further, compared with the acute intermittent hypoxia group, rats in chronic intermittent hypoxia group exhibited higher measures of ventilatory responses after 1 day of intermittent hypoxia (P < 0.05). These effects peaked after 3 days of intermittent hypoxia treatment and then decreased gradually. Moreover, these changes were diminished in the experimental group. 5-HT expression in the RMg region increased after chronic intermittent hypoxia, which was consistent with the changing trend of ventilatory responses. While activation of the 5-HT1A receptor in the RMg region alleviated this phenomenon.
Conclusions
The results indicate that RMg 5-HT1A receptor, via changing the expression level of 5-HT in the RMg region, is involved in the modulation of the increased ventilatory responses induced by intermittent hypoxia.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献