Targeting lysyl oxidase like 2 attenuates OVA-induced airway remodeling partly via the AKT signaling pathway

Author:

Zeng Rong,Zhang Dong,Zhang Jintao,Pan Yun,Liu Xiaofei,Qi Qian,Xu Jiawei,Xu Changjuan,Shi Shuochuan,Wang Junfei,Liu Tian,Dong Liang

Abstract

Abstract Background Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. Methods The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. Results Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-β1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. Conclusions Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Chin

Key Research and Development Program of Shandong Province

Shandong Provincial Natural Science Foundation

Jinan Clinical Medicine Research Program for Respiratory Disease

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3