Author:
Wang Xin,Xiang Yongbo,Zhang Ting,Yang Yuqing,Sun Xuefeng,Shi Juhong
Abstract
Abstract
Introduction
Calcium is an important coagulation factor and hypocalcemia is related to progression and poor prognosis of many cardiopulmonary diseases. However, influence of hypocalcemia on pulmonary thromboembolism (PTE) prognosis has never been reported. This study aimed to explore its prognostic value and optimize the pulmonary embolism severity index (PESI), the widely used prognosis assessment model, based on the value.
Methods
PTE patients’ variables in PESI and other related clinical characteristics including admission serum calcium were collected. Associations between these variables and PTE mortality were assessed by logistic regression and cox analysis. Variables significantly associated with 30-day PTE mortality were included to develop a new prognosis prediction rule and then its validity was compared with PESI and simplified PESI (sPESI).
Results
496 PTE patients were included and 49.48% patients had hypocalcemia (serum calcium ≤ 2.13 mmol/L) in admission, showing higher 7-day (P = 0.021), 14-day (P = 0.002), 30-day (13.03% vs 4.98%, P = 0.002) mortalities than patients without hypocalcemia. Adjusting for variables in PESI, hypocalcemia was further revealed to be an independent predictor of 30-day mortality (P = 0.014).
The optimal prediction rule contained hypocalcemia and 5 variables in PESI and sPESI, showing higher predictive validity [sensitivity (Sen): 0.930, specificity (Spec): 0.390, area under curve (AUC): 0.800] than PESI (Sen: 0.814, Spec: 0.367, AUC: 0.716) and sPESI (Sen: 0.907, Spec: 0.216, AUC: 0.703).
Conclusions
Hypocalcemia is an independent predictor of the mortality following acute PTE. Based on hypocalcemia, the optimal prediction rule showed higher validity than PESI and sPESI.
Funder
Chinese Academy of Medical Sciences Fundamental Research Funds
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS) The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J. 2020;41(4):543–603.
2. Bĕlohlávek J, Dytrych V, Linhart A. Pulmonary embolism, part I: epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol. 2013;18(2):129–38.
3. Chan CM, Woods C, Shorr AF. The validation and reproducibility of the pulmonary embolism severity index. J Thromb Haemost. 2010;8(7):1509–14.
4. Vanni S, Nazerian P, Pepe G, et al. Comparison of two prognostic models for acute pulmonary embolism: clinical vs. right ventricular dysfunction-guided approach. J Thromb Haemost. 2011;9(10):1916–23.
5. Jimenez D, Kopecna D, Tapson V, Briese B, Schreiber D, Lobo JL, Monreal M, Aujesky D, Sanchez O, Meyer G, Konstantinides S, Yusen RD, On BOTP. Derivation and validation of multimarker prognostication for normotensive patients with acute symptomatic pulmonary embolism. Am J Respir Crit Care Med. 2014;189(6):718–26.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献