Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway

Author:

Chen Shangqin,Wu Qiuping,Zhong Dingjuan,Li Changchong,Du LizhongORCID

Abstract

Abstract Background Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and hyperoxia exposure is a major cause. In hyperoxic lung injury animal model, alveolar simplification and pro-inflammatory cells infiltration are the main pathophysiologic changes. Caffeine is a drug used to treat apnea in premature infants. Early use of caffeine can decrease the rate and the severity of BPD while the mechanisms are still unclear. The purpose of this study was to evaluate the effects of caffeine on inflammation and lung development in neonatal mice with hyperoxic lung injury and to explore the possible mechanism. Methods Following 14 d of 75% oxygen exposure in newborn mouse, the BPD model was established. Caffeine at a dose of 1 g/L was added in drinking water to nursing mouse. We measured the concentration of caffeine in serum and oxidative stress in lung by commercially available kits. Adenosine 2A receptor (A2AR) expression and lung inflammation were measured by Immunohistochemistry and western blotting. Apoptosis and surfactant protein-C (SFTPC) levels were measured by immunofluorescence. The inflammasome and NF-κB pathway proteins were assessed by western blotting. Results We found that the caffeine concentration in plasma at present dose significantly decreased the expression of A2AR protein in mice lung. Caffeine treatment significantly reduced oxidative stress, improved weight gain, promoted alveolar development, attenuated inflammatory infiltration and lung injury in hyperoxia-induced lung injury mice. Moreover, caffeine decreased the cell apoptosis in lung tissues, especially the Type II alveolar epithelial cell. The expression of NLRP3 inflammasome protein and NF-κB pathway were significantly inhibited by caffeine treatment. Conclusion Caffeine treatment can protect hyperoxia-induced mice lung from oxidative injury by inhibiting NLRP3 inflammasome and NF-κB pathway.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3