Author:
Suber Tomeka L.,Wendell Stacy G.,Mullett Steven J.,Zuchelkowski Benjamin,Bain William,Kitsios Georgios D.,McVerry Bryan J.,Ray Prabir,Ray Anuradha,Mallampalli Rama K.,Zhang Yingze,Shah Faraaz,Nouraie Seyed Mehdi,Lee Janet S.
Abstract
Abstract
Background
Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure.
Methods
In a nested case–control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data.
Results
Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively).
Conclusions
This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.
Funder
Burroughs Wellcome Fund
National Institutes of Health
Robert Wood Johnson Foundation
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Cochi SE, Kempker JA, Annangi S, Kramer MR, Martin GS. Mortality trends of acute respiratory distress syndrome in the United States from 1999 to 2013. Ann Am Thorac Soc. 2016;13(10):1742–51.
2. Reynolds HN, McCunn M, Borg U, Habashi N, Cottingham C, Bar-Lavi Y. Acute respiratory distress syndrome: estimated incidence and mortality rate in a 5 million-person population base. Crit Care. 1998;2(1):29–34.
3. Sinha P, Calfee CS, Cherian S, Brealey D, Cutler S, King C, et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir Med. 2020;8(12):1209–18.
4. Bain W, Yang H, Shah FA, Suber T, Drohan C, Al-Yousif N, et al. COVID-19 versus Non-COVID-19 acute respiratory distress syndrome: comparison of demographics, physiologic parameters, inflammatory biomarkers, and clinical outcomes. Ann Am Thorac Soc. 2021;18(7):1202–10.
5. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献