Surface electromyography to quantify neuro-respiratory drive and neuro-mechanical coupling in mechanically ventilated children

Author:

Koopman Alette A.,van Dijk Jefta,Oppersma Eline,Blokpoel Robert G. T.,Kneyber Martin C. J.

Abstract

Abstract Background The patient’s neuro-respiratory drive, measured as electrical activity of the diaphragm (EAdi), quantifies the mechanical load on the respiratory muscles. It correlates with respiratory effort but requires a dedicated esophageal catheter. Transcutaneous (surface) monitoring of respiratory muscle electromyographic (sEMG) signals may be considered a suitable alternative to EAdi because of its non-invasive character, with the additional benefit that it allows for simultaneously monitoring of other respiratory muscles. We therefore sought to study the neuro-respiratory drive and timing of inspiratory muscles using sEMG in a cohort of children enrolled in a pediatric ventilation liberation trial. The neuro-mechanical coupling, relating the pressure generated by the inspiratory muscles to the sEMG signals of these muscles, was also calculated. Methods This is a secondary analysis of data from a randomized cross-over trial in ventilated patients aged < 5 years. sEMG recordings of the diaphragm and parasternal intercostal muscles (ICM), esophageal pressure tracings and ventilator scalars were simultaneously recorded during continuous spontaneous ventilation and pressure controlled-intermittent mandatory ventilation, and at three levels of pressure support. Neuro-respiratory drive, timing of diaphragm and ICM relative to the mechanical ventilator’s inspiration and neuro-mechanical coupling were quantified. Results Twenty-nine patients were included (median age: 5.9 months). In response to decreasing pressure support, both amplitude of sEMG (diaphragm: p = 0.001 and ICM: p = 0.002) and neuro-mechanical efficiency indices increased (diaphragm: p = 0.05 and ICM: p < 0.001). Poor correlations between neuro-respiratory drive and respiratory effort were found, with R2: 0.088 [0.021–0.152]. Conclusions sEMG allows for the quantification of the electrical activity of the diaphragm and ICM in mechanically ventilated children. Both neuro-respiratory drive and neuro-mechanical efficiency increased in response to lower inspiratory assistance. There was poor correlation between neuro-respiratory drive and respiratory effort. Trial registration ClinicalTrials.gov ID NCT05254691. Registered 24 February 2022, registered retrospectively.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3