Author:
Liu Yaping,Zhang Xinxin,Wang Jing,Yang Fuhuang,Luo Wei,Huang Jie,Chen Mengling,Wang Sha,Li Caolong,Zhang Wei,Chao Jie
Abstract
AbstractSilicosis is a pulmonary fibrosis-associated disease caused by the inhalation of large amounts of free silicon dioxide (SiO2) that mainly manifests as early inflammation and late pulmonary fibrosis. As macrophage precursors, monocytes accumulate in the lung during early inflammation, but their role in the development of silicosis is unclear. Single-cell sequencing (cell numbers = 25,002), Western blotting, quantitative real-time PCR, ELISA and cell functional experiments were used to explore the specific effects of monocytes on fibroblasts. The CRISPR/Cas9 system was used to specifically knock down ZC3H4, a novel member of the CCCH zinc finger protein family, and was combined with pharmacological methods to explore the mechanism by which ZC3H4 affects chemokine and cytokine secretion. The results indicated that (1) SiO2 induced an infiltrating phenotype in monocytes; (2) infiltrating monocytes inhibited the activation, viability and migration of fibroblasts by regulating IL-10 but not IL-8; and (3) SiO2 downregulated IL-10 via ZC3H4-induced autophagy. This study revealed that ZC3H4 regulated the secretion function of monocytes, which, in turn, inhibited fibroblast function in early inflammation through autophagy signaling, thereby reducing pulmonary fibrosis. These findings provide a new idea for the clinical treatment of silicosis.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献