CALU promotes lung adenocarcinoma progression by enhancing cell proliferation, migration and invasion

Author:

Li Yan,Sun Shengnan,Zhang Hui,Jing Yongjian,Ji Xingzhao,Wan Qiang,Liu Yi

Abstract

Abstract Background Lung cancer is the second most common cancer with the highest mortality in the world. Calumenin as a molecular chaperone that not only binds various proteins within the endoplasmic reticulum but also plays crucial roles in diverse processes associated with tumor development. However, the regulatory mechanism of calumenin in lung adenocarcinoma remains elusive. Here, we studied the impact of calumenin on lung adenocarcinoma and explored possible mechanisms. Methods 5-ethynyl-2’-deoxyuridine assay, colony formation, transwell and wound healing assays were performed to explore the effects of calumenin on the proliferation and migration of lung adenocarcinoma cells. To gain insights into the underlying mechanisms through which calumenin knockdown inhibits the migration and proliferation of lung adenocarcinoma, we performed Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis and Ingenuity Pathway Analysis based on transcriptomics by comparing calumenin knockdown with normal A549 cells. Results The mRNA and protein levels of calumenin in lung adenocarcinoma are highly expressed and they are related to an unfavorable prognosis in this disease. Calumenin enhances the proliferation and migration of A549 and H1299 cells. Gene Set Enrichment Analysis revealed that knockdown of calumenin in A549 cells significantly inhibited MYC and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog signaling pathways while activating interferon signals, inflammatory signals, and p53 pathways. Ingenuity pathway analysis provided additional insights, indicating that the interferon and inflammatory pathways were prominently activated upon calumenin knockdown in A549 cells. Conclusions The anti-cancer mechanism of calumenin knockdown might be related to the inhibition of MYC and KRAS signals but the activation of interferon signals, inflammatory signals and p53 pathways.

Funder

the Shandong Provincial Natural Science Foundation

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3