Validation of at-the-bedside formulae for estimating ventilator driving pressure during airway pressure release ventilation using computer simulation

Author:

Mistry Sonal,Das Anup,Saffaran Sina,Yehya Nadir,Scott Timothy E.,Chikhani Marc,Laffey John G.,Hardman Jonathan G.,Camporota Luigi,Bates Declan G.

Abstract

Abstract Background Airway pressure release ventilation (APRV) is widely available on mechanical ventilators and has been proposed as an early intervention to prevent lung injury or as a rescue therapy in the management of refractory hypoxemia. Driving pressure ($$\Delta P$$ Δ P ) has been identified in numerous studies as a key indicator of ventilator-induced-lung-injury that needs to be carefully controlled. $$\Delta P$$ Δ P delivered by the ventilator in APRV is not directly measurable in dynamic conditions, and there is no “gold standard” method for its estimation. Methods We used a computational simulator matched to data from 90 patients with acute respiratory distress syndrome (ARDS) to evaluate the accuracy of three “at-the-bedside” methods for estimating ventilator $$\Delta P$$ Δ P during APRV. Results Levels of $$\Delta P$$ Δ P delivered by the ventilator in APRV were generally within safe limits, but in some cases exceeded levels specified by protective ventilation strategies. A formula based on estimating the intrinsic positive end expiratory pressure present at the end of the APRV release provided the most accurate estimates of $$\Delta P$$ Δ P . A second formula based on assuming that expiratory flow, volume and pressure decay mono-exponentially, and a third method that requires temporarily switching to volume-controlled ventilation, also provided accurate estimates of true $$\Delta P$$ Δ P . Conclusions Levels of $$\Delta P$$ Δ P delivered by the ventilator during APRV can potentially exceed levels specified by standard protective ventilation strategies, highlighting the need for careful monitoring. Our results show that $$\Delta P$$ Δ P delivered by the ventilator during APRV can be accurately estimated at the bedside using simple formulae that are based on readily available measurements.

Funder

EPSRC

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3