Principal component analysis of flow-volume curves in COPDGene to link spirometry with phenotypes of COPD

Author:

Verstraete Kenneth,Das Nilakash,Gyselinck Iwein,Topalovic Marko,Troosters Thierry,Crapo James D.,Silverman Edwin K.,Make Barry J.,Regan Elizabeth A.,Jensen Robert,De Vos Maarten,Janssens Wim

Abstract

Abstract Background Parameters from maximal expiratory flow-volume curves (MEFVC) have been linked to CT-based parameters of COPD. However, the association between MEFVC shape and phenotypes like emphysema, small airways disease (SAD) and bronchial wall thickening (BWT) has not been investigated. Research question We analyzed if the shape of MEFVC can be linked to CT-determined emphysema, SAD and BWT in a large cohort of COPDGene participants. Study design and methods In the COPDGene cohort, we used principal component analysis (PCA) to extract patterns from MEFVC shape and performed multiple linear regression to assess the association of these patterns with CT parameters over the COPD spectrum, in mild and moderate-severe COPD. Results Over the entire spectrum, in mild and moderate-severe COPD, principal components of MEFVC were important predictors for the continuous CT parameters. Their contribution to the prediction of emphysema diminished when classical pulmonary function test parameters were added. For SAD, the components remained very strong predictors. The adjusted R2 was higher in moderate-severe COPD, while in mild COPD, the adjusted R2 for all CT outcomes was low; 0.28 for emphysema, 0.21 for SAD and 0.19 for BWT. Interpretation The shape of the maximal expiratory flow-volume curve as analyzed with PCA is not an appropriate screening tool for early disease phenotypes identified by CT scan. However, it contributes to assessing emphysema and SAD in moderate-severe COPD.

Funder

Fonds Wetenschappelijk Onderzoek

National Institutes of Health

GlaxoSmithKline

Bayer

National Heart, Lung, and Blood Institute

AstraZeneca

Pearl Research

Sunovion

Verona

Boehringer Ingelheim

Takeda

Third Pole

Phillips

Circasia

National Jewish Health

AI in Flanders

Chiesi Farmaceutici

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3