Predicting micropapillary or solid pattern of lung adenocarcinoma with CT-based radiomics, conventional radiographic and clinical features

Author:

Wang Zhe,Zhang Ning,Liu Junhong,Liu Junfeng

Abstract

Abstract Background To build prediction models with radiomics features, clinical/conventional radiographic signs and combined scores for the discrimination of micropapillary or solid subtypes (high-risk subtypes) of lung adenocarcinoma. Methods This retrospective study enrolled 351 patients with and without high-risk subtypes. Least Absolute Shrinkage and Selection Operator (LASSO) regression with cross-validation was performed to determine the optimal features of radiomics model. Missing clinical data were imputed by Multiple Imputation with Chain Equations (MICE). Clinical model with radiographic signs was built and scores of both models were integrated to establish combined model. Receiver operating characteristics (ROC) curves, area under ROC curves and decision curve analysis (DCA) were plotted to evaluate the model performance and clinical application. Results Stratified splitting allocated 246 patients into training set. MICE for missing values obtained complete and unbiased data for the following analysis. Ninety radiomic features and four clinical/conventional radiographic signs were used to predict the high-risk subtypes. The radiomic model, clinical model and combined model achieved AUCs of 0.863 (95%CI: 0.817–0.909), 0.771 (95%CI: 0.713–0.713) and 0.872 (95%CI: 0.829–0.916) in the training set, and 0.849 (95%CI: 0.774–0.924), 0.778 (95%CI: 0.687–0.868) and 0.853 (95%CI: 0.782–0.925) in the test set. Decision curve showed that the radiomic and combined models were more clinically useful when the threshold reached 37.5%. Conclusions Radiomics features could facilitate the prediction of subtypes of lung adenocarcinoma. A simple combination of radiomics and clinical scores generated a robust model with high performance for the discrimination of micropapillary or solid subtype of lung adenocarcinoma.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3