Expiratory high-frequency percussive ventilation: a novel concept for improving gas exchange

Author:

Peták Ferenc,Fodor Gergely H.,Schranc Álmos,Südy Roberta,Balogh Ádám L.,Babik Barna,Dos Santos Rocha André,Bayat Sam,Bizzotto Davide,Dellacà Raffaele L.,Habre Walid

Abstract

Abstract Background Although high-frequency percussive ventilation (HFPV) improves gas exchange, concerns remain about tissue overdistension caused by the oscillations and consequent lung damage. We compared a modified percussive ventilation modality created by superimposing high-frequency oscillations to the conventional ventilation waveform during expiration only (eHFPV) with conventional mechanical ventilation (CMV) and standard HFPV. Methods Hypoxia and hypercapnia were induced by decreasing the frequency of CMV in New Zealand White rabbits (n = 10). Following steady-state CMV periods, percussive modalities with oscillations randomly introduced to the entire breathing cycle (HFPV) or to the expiratory phase alone (eHFPV) with varying amplitudes (2 or 4 cmH2O) and frequencies were used (5 or 10 Hz). The arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) were determined. Volumetric capnography was used to evaluate the ventilation dead space fraction, phase 2 slope, and minute elimination of CO2. Respiratory mechanics were characterized by forced oscillations. Results The use of eHFPV with 5 Hz superimposed oscillation frequency and an amplitude of 4 cmH2O enhanced gas exchange similar to those observed after HFPV. These improvements in PaO2 (47.3 ± 5.5 vs. 58.6 ± 7.2 mmHg) and PaCO2 (54.7 ± 2.3 vs. 50.1 ± 2.9 mmHg) were associated with lower ventilation dead space and capnogram phase 2 slope, as well as enhanced minute CO2 elimination without altering respiratory mechanics. Conclusions These findings demonstrated improved gas exchange using eHFPV as a novel mechanical ventilation modality that combines the benefits of conventional and small-amplitude high-frequency oscillatory ventilation, owing to improved longitudinal gas transport rather than increased lung surface area available for gas exchange.

Funder

Hungarian Science Foundation

University of Szeged

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3