Simulation device for shoulder reductions: overview of prototyping, testing, and design instructions

Author:

Taneja Sorab,Tenpas Will,Jain Mehul,Alfonsi Peter,Ratagiri Abhinav,Saterbak AnnORCID,Theiling Jason

Abstract

Abstract Background Shoulder dislocations are common occurrences, yet there are few simulation devices to train medical personnel on how to reduce these dislocations. Reductions require a familiarity with the shoulder and a nuanced motion against strong muscle tension. The goal of this work is to describe the design of an easily replicated, low-cost simulator for training shoulder reductions. Materials and methods An iterative, stepwise engineering design process was used to design and implement ReducTrain. A needs analysis with clinical experts led to the selection of the traction-countertraction and external rotation methods as educationally relevant techniques to include. A set of design requirements and acceptance criteria was established that considered durability, assembly time, and cost. An iterative prototyping development process was used to meet the acceptance criteria. Testing protocols for each design requirement are also presented. Step-by-step instructions are provided to allow the replication of ReducTrain from easily sourced materials, including plywood, resistance bands, dowels, and various fasteners, as well as a 3D-printed shoulder model, whose printable file is included at a link in the Additional file 1: Appendix. Results A description of the final model is given. The total cost for all materials for one ReducTrain model is under US $200, and it takes about 3 h and 20 min to assemble. Based on repetitive testing, the device should not see any noticeable changes in durability after 1000 uses but may exhibit some changes in resistance band strength after 2000 uses. Discussion The ReducTrain device fills a gap in emergency medicine and orthopedic simulation. Its wide variety of uses points to its utility in several instructional formats. With the rise of makerspaces and public workshops, the construction of the device can be easily completed. While the device has some limitations, its robust design allows for simple upkeep and a customizable training experience. Conclusion A simplified anatomical design allows for the ReducTrain model to serve as a viable training device for shoulder reductions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference37 articles.

1. Zacchilli MA, Owens BD. Epidemiology of shoulder dislocations presenting to emergency departments in the United States. J Bone Joint Surg Am. 2010;92:542–9.

2. Abrams R, Akbarnia H. Shoulder dislocations overview. https://www.ncbi.nlm.nih.gov/books/NBK459125/. Accessed 28 Dec 2021.

3. Gottlieb M. Shoulder dislocations in the emergency department: a comprehensive review of reduction techniques. J Emerg Med. 2020;58:647–66.

4. Youm T, Takemoto R, Park BKH. Acute management of shoulder dislocations. J Am Acad Orthop Surg. 2014;22:761–71.

5. Vogel D, Harendza S. Basic practical skills teaching and learning in undergraduate medical education – a review on methodological evidence. GMS. J Med Educ. 2016;33(4):64.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3