Use of simulation as a needs assessment to develop a focused team leader training curriculum for resuscitation teams

Author:

Zern Susan Coffey,Marshall William J.,Shewokis Patricia A.,Vest Michael T.ORCID

Abstract

Abstract Background Many inpatients experience cardiac arrest and mortality in this population is extremely high. Simulation is frequently used to train code teams with the goal of improving these outcomes. A key step in designing such a training curriculum is to perform a needs assessment. We report on the effectiveness of a simulation-based training program for residents designed using unannounced in-situ simulation cardiac arrest data as a needs assessment. Methods In order to develop the curriculum for training, a needs assessment was done using in-situ simulation. Prior to instruction, residents were assessed in their ability to lead a simulated resuscitation using a standardized checklist. During the intervention phase, residents participated in didactic and team training. The didactic training consisted of pharmacology review, ACLS update and TeamSTEPPS training. Residents took turns as code team leader in three simulation sessions. Rapid cycle deliberate practice (RCDP) was employed as part of simulation sessions. All residents returned, for post-intervention assessment. Mean pre-post test scores were analyzed to determine if there was a significant difference. Results Twenty-seven residents participated. Mean pre-training assessment score was 47.6 (95% CI 37.5-57.9). The mean post-training assessment score was 84.4 (95% CI 79.0-89.5). The mean time to defibrillation after pads were placed in scenario with shockable rhythm decreased from 102.2 seconds (95% CI 74.0-130.5) to 56.3 (95% CI 32.7-79.8). Conclusion Using unannounced in-situ cardiac arrest simulations as a needs assessment, a simulation-based training program was developed that significantly improved resident performance as team leader. Future work is needed to determine if this improvement translates into patient benefits and is sustainable. However, in-situ simulation is a promising tool for curriculum development.

Publisher

Springer Science and Business Media LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3