Abstract
Abstract
Background
Gene is a key step in genome annotation. Ab initio gene prediction enables gene annotation of new genomes regardless of availability of homologous sequences. There exist a number of ab initio gene prediction tools and they have been widely used for gene annotation for various species. However, existing tools are not optimized for identifying genes with highly variable GC content. In addition, some genes in grass genomes exhibit a sharp 5 ′- 3′ decreasing GC content gradient, which is not carefully modeled by available gene prediction tools. Thus, there is still room to improve the sensitivity and accuracy for predicting genes with GC gradients.
Results
In this work, we designed and implemented a new hidden Markov model (HMM)-based ab initio gene prediction tool, which is optimized for finding genes with highly variable GC contents, such as the genes with negative GC gradients in grass genomes. We tested the tool on three datasets from Arabidopsis thaliana and Oryza sativa. The results showed that our tool can identify genes missed by existing tools due to the highly variable GC contents.
Conclusions
GPRED-GC can effectively predict genes with highly variable GC contents without manual intervention. It provides a useful complementary tool to existing ones such as Augustus for more sensitive gene discovery. The source code is freely available at https://sourceforge.net/projects/gpred-gc/.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献