BaPreS: a software tool for predicting bacteriocins using an optimal set of features

Author:

Akhter SuraiyaORCID,Miller John H.

Abstract

Abstract Background Antibiotic resistance is a major public health concern around the globe. As a result, researchers always look for new compounds to develop new antibiotic drugs for combating antibiotic-resistant bacteria. Bacteriocin becomes a promising antimicrobial agent to fight against antibiotic resistance, due to cases of both broad and narrow killing spectra. Sequence matching methods are widely used to identify bacteriocins by comparing them with the known bacteriocin sequences; however, these methods often fail to detect new bacteriocin sequences due to their high diversity. The ability to use a machine learning approach can help find new highly dissimilar bacteriocins for developing highly effective antibiotic drugs. The aim of this work is to develop a machine learning-based software tool called BaPreS (Bacteriocin Prediction Software) using an optimal set of features for detecting bacteriocin protein sequences with high accuracy. We extracted potential features from known bacteriocin and non-bacteriocin sequences by considering the physicochemical and structural properties of the protein sequences. Then we reduced the feature set using statistical justifications and recursive feature elimination technique. Finally, we built support vector machine (SVM) and random forest (RF) models using the selected features and utilized the best machine learning model to implement the software tool. Results We applied BaPreS to an established dataset and evaluated its prediction performance. Acquired results show that the software tool can achieve a prediction accuracy of 95.54% for testing protein sequences. This tool allows users to add new bacteriocin or non-bacteriocin sequences in the training dataset to further enhance the predictive power of the tool. We compared the prediction performance of the BaPreS with a popular sequence matching-based tool and a deep learning-based method, and our software tool outperformed both. Conclusions BaPreS is a bacteriocin prediction tool that can be used to discover new highly dissimilar bacteriocins for developing highly effective antibiotic drugs. This software tool can be used with Windows, Linux and macOS operating systems. The open-source software package and its user manual are available at https://github.com/suraiya14/BaPreS.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3