Detecting differentially methylated regions using a fast wavelet-based approach to functional association analysis

Author:

Denault William R. P.ORCID,Jugessur Astanand

Abstract

Abstract Background We present here a computational shortcut to improve a powerful wavelet-based method by Shim and Stephens (Ann Appl Stat 9(2):665–686, 2015. 10.1214/14-AOAS776) called WaveQTL that was originally designed to identify DNase I hypersensitivity quantitative trait loci (dsQTL). Results WaveQTL relies on permutations to evaluate the significance of an association. We applied a recent method by Zhou and Guan (J Am Stat Assoc 113(523):1362–1371, 2017. 10.1080/01621459.2017.1328361) to boost computational speed, which involves calculating the distribution of Bayes factors and estimating the significance of an association by simulations rather than permutations. We called this simulation-based approach “fast functional wavelet” (FFW), and tested it on a publicly available DNA methylation (DNAm) dataset on colorectal cancer. The simulations confirmed a substantial gain in computational speed compared to the permutation-based approach in WaveQTL. Furthermore, we show that FFW controls the type I error satisfactorily and has good power for detecting differentially methylated regions. Conclusions Our approach has broad utility and can be applied to detect associations between different types of functions and phenotypes. As more and more DNAm datasets are being made available through public repositories, an attractive application of FFW would be to re-analyze these data and identify associations that might have been missed by previous efforts. The full R package for FFW is freely available at GitHub https://github.com/william-denault/ffw.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3