Anomaly detection in genomic catalogues using unsupervised multi-view autoencoders

Author:

Ferré Quentin,Chèneby Jeanne,Puthier Denis,Capponi CécileORCID,Ballester Benoît

Abstract

Abstract Background Accurate identification of Transcriptional Regulator binding locations is essential for analysis of genomic regions, including Cis Regulatory Elements. The customary NGS approaches, predominantly ChIP-Seq, can be obscured by data anomalies and biases which are difficult to detect without supervision. Results Here, we develop a method to leverage the usual combinations between many experimental series to mark such atypical peaks. We use deep learning to perform a lossy compression of the genomic regions’ representations with multiview convolutions. Using artificial data, we show that our method correctly identifies groups of correlating series and evaluates CRE according to group completeness. It is then applied to the ReMap database’s large volume of curated ChIP-seq data. We show that peaks lacking known biological correlators are singled out and less confirmed in real data. We propose normalization approaches useful in interpreting black-box models. Conclusion Our approach detects peaks that are less corroborated than average. It can be extended to other similar problems, and can be interpreted to identify correlation groups. It is implemented in an open-source tool called atyPeak.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3