Maptcha: an efficient parallel workflow for hybrid genome scaffolding

Author:

Bhowmik Oieswarya,Rahman Tazin,Kalyanaraman Ananth

Abstract

Abstract Background Genome assembly, which involves reconstructing a target genome, relies on scaffolding methods to organize and link partially assembled fragments. The rapid evolution of long read sequencing technologies toward more accurate long reads, coupled with the continued use of short read technologies, has created a unique need for hybrid assembly workflows. The construction of accurate genomic scaffolds in hybrid workflows is complicated due to scale, sequencing technology diversity (e.g., short vs. long reads, contigs or partial assemblies), and repetitive regions within a target genome. Results In this paper, we present a new parallel workflow for hybrid genome scaffolding that would allow combining pre-constructed partial assemblies with newly sequenced long reads toward an improved assembly. More specifically, the workflow, called , is aimed at generating long scaffolds of a target genome, from two sets of input sequences—an already constructed partial assembly of contigs, and a set of newly sequenced long reads. Our scaffolding approach internally uses an alignment-free mapping step to build a $$\langle $$ contig,contig$$\rangle $$ graph using long reads as linking information. Subsequently, this graph is used to generate scaffolds. We present and evaluate a graph-theoretic “wiring” heuristic to perform this scaffolding step. To enable efficient workload management in a parallel setting, we use a batching technique that partitions the scaffolding tasks so that the more expensive alignment-based assembly step at the end can be efficiently parallelized. This step also allows the use of any standalone assembler for generating the final scaffolds. Conclusions Our experiments with on a variety of input genomes, and comparison against two state-of-the-art hybrid scaffolders demonstrate that is able to generate longer and more accurate scaffolds substantially faster. In almost all cases, the scaffolds produced by are at least an order of magnitude longer (in some cases two orders) than the scaffolds produced by state-of-the-art tools. runs significantly faster too, reducing time-to-solution from hours to minutes for most input cases. We also performed a coverage experiment by varying the sequencing coverage depth for long reads, which demonstrated the potential of to generate significantly longer scaffolds in low coverage settings ($$1\times $$ 1 × $$10\times $$ 10 × ).

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3