Integer programming for selecting set of informative markers in paternity inference

Author:

Nishiyama Soichiro,Sato Kengo,Tao Ryutaro

Abstract

Abstract Background Parentage information is fundamental to various life sciences. Recent advances in sequencing technologies have made it possible to accurately infer parentage even in non-model species. The optimization of sets of genome-wide markers is valuable for cost-effective applications but requires extremely large amounts of computation, which presses for the development of new efficient algorithms. Results Here, for a closed half-sib population, we generalized the process of marker loci selection as a binary integer programming problem. The proposed systematic formulation considered marker localization and the family structure of the potential parental population, resulting in an accurate assignment with a small set of markers. We also proposed an efficient heuristic approach, which effectively improved the number of markers, localization, and tolerance to missing data of the set. Applying this method to the actual genotypes of apple (Malus × domestica) germplasm, we identified a set of 34 SNP markers that distinguished 300 potential parents crossed to a particular cultivar with a greater than 99% accuracy. Conclusions We present a novel approach for selecting informative markers based on binary integer programming. Since the data generated by high-throughput sequencing technology far exceeds the requirement for parentage assignment, a combination of the systematic marker selection with targeted SNP genotyping, such as KASP, allows flexibly enlarging the analysis up to a scale that has been unrealistic in various species. The method developed in this study can be directly applied to unsolved large-scale problems in breeding, reproduction, and ecological research, and is expected to lead to novel knowledge in various biological fields. The implementation is available at https://github.com/SoNishiyama/IP-SIMPAT.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3