Moiety modeling framework for deriving moiety abundances from mass spectrometry measured isotopologues

Author:

Jin Huan,Moseley Hunter N. B.ORCID

Abstract

Abstract Background Stable isotope tracing can follow individual atoms through metabolic transformations through the detection of the incorporation of stable isotope within metabolites. This resulting data can be interpreted in terms related to metabolic flux. However, detection of a stable isotope in metabolites by mass spectrometry produces a profile of isotopologue peaks that requires deconvolution to ascertain the localization of isotope incorporation. Results To aid the interpretation of the mass spectroscopy isotopologue profile, we have developed a moiety modeling framework for deconvoluting metabolite isotopologue profiles involving single and multiple isotope tracers. This moiety modeling framework provides facilities for moiety model representation, moiety model optimization, and moiety model selection. The moiety_modeling package was developed from the idea of metabolite decomposition into moiety units based on metabolic transformations, i.e. a moiety model. The SAGA-optimize package, solving a boundary-value inverse problem through a combined simulated annealing and genetic algorithm, was developed for model optimization. Additional optimization methods from the Python scipy library are utilized as well. Several forms of the Akaike information criterion and Bayesian information criterion are provided for selecting between moiety models. Moiety models and associated isotopologue data are defined in a JSONized format. By testing the moiety modeling framework on the timecourses of 13C isotopologue data for uridine diphosphate N-acetyl-D-glucosamine (UDP-GlcNAc) in human prostate cancer LnCaP-LN3 cells, we were able to confirm its robust performance in isotopologue deconvolution and moiety model selection. Conclusions SAGA-optimize is a useful Python package for solving boundary-value inverse problems, and the moiety_modeling package is an easy-to-use tool for mass spectroscopy isotopologue profile deconvolution involving single and multiple isotope tracers. Both packages are freely available on GitHub and via the Python Package Index.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3