Author:
Tran Quynh T.,Alom Md Zahangir,Orr Brent A.
Abstract
Abstract
Background
Precision medicine for cancer treatment relies on an accurate pathological diagnosis. The number of known tumor classes has increased rapidly, and reliance on traditional methods of histopathologic classification alone has become unfeasible. To help reduce variability, validation costs, and standardize the histopathological diagnostic process, supervised machine learning models using DNA-methylation data have been developed for tumor classification. These methods require large labeled training data sets to obtain clinically acceptable classification accuracy. While there is abundant unlabeled epigenetic data across multiple databases, labeling pathology data for machine learning models is time-consuming and resource-intensive, especially for rare tumor types. Semi-supervised learning (SSL) approaches have been used to maximize the utility of labeled and unlabeled data for classification tasks and are effectively applied in genomics. SSL methods have not yet been explored with epigenetic data nor demonstrated beneficial to central nervous system (CNS) tumor classification.
Results
This paper explores the application of semi-supervised machine learning on methylation data to improve the accuracy of supervised learning models in classifying CNS tumors. We comprehensively evaluated 11 SSL methods and developed a novel combination approach that included a self-training with editing using support vector machine (SETRED-SVM) model and an L2-penalized, multinomial logistic regression model to obtain high confidence labels from a few labeled instances. Results across eight random forest and neural net models show that the pseudo-labels derived from our SSL method can significantly increase prediction accuracy for 82 CNS tumors and 9 normal controls.
Conclusions
The proposed combination of semi-supervised technique and multinomial logistic regression holds the potential to leverage the abundant publicly available unlabeled methylation data effectively. Such an approach is highly beneficial in providing additional training examples, especially for scarce tumor types, to boost the prediction accuracy of supervised models.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference59 articles.
1. Balyen L, Peto T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia Pac J Ophthalmol (Phila). 2019;8(3):264–72.
2. Currie G, Hawk KE, Rohren E, Vial A, Klein R. Machine learning and deep learning in medical imaging: intelligent imaging. J Med Imaging Radiat Sci. 2019;50(4):477–87.
3. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.
4. Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure FX, Birgand G, Holmes AH. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–95.
5. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111(5):1452–60.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献