Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors

Author:

Tran Quynh T.,Alom Md Zahangir,Orr Brent A.

Abstract

Abstract Background Precision medicine for cancer treatment relies on an accurate pathological diagnosis. The number of known tumor classes has increased rapidly, and reliance on traditional methods of histopathologic classification alone has become unfeasible. To help reduce variability, validation costs, and standardize the histopathological diagnostic process, supervised machine learning models using DNA-methylation data have been developed for tumor classification. These methods require large labeled training data sets to obtain clinically acceptable classification accuracy. While there is abundant unlabeled epigenetic data across multiple databases, labeling pathology data for machine learning models is time-consuming and resource-intensive, especially for rare tumor types. Semi-supervised learning (SSL) approaches have been used to maximize the utility of labeled and unlabeled data for classification tasks and are effectively applied in genomics. SSL methods have not yet been explored with epigenetic data nor demonstrated beneficial to central nervous system (CNS) tumor classification. Results This paper explores the application of semi-supervised machine learning on methylation data to improve the accuracy of supervised learning models in classifying CNS tumors. We comprehensively evaluated 11 SSL methods and developed a novel combination approach that included a self-training with editing using support vector machine (SETRED-SVM) model and an L2-penalized, multinomial logistic regression model to obtain high confidence labels from a few labeled instances. Results across eight random forest and neural net models show that the pseudo-labels derived from our SSL method can significantly increase prediction accuracy for 82 CNS tumors and 9 normal controls. Conclusions The proposed combination of semi-supervised technique and multinomial logistic regression holds the potential to leverage the abundant publicly available unlabeled methylation data effectively. Such an approach is highly beneficial in providing additional training examples, especially for scarce tumor types, to boost the prediction accuracy of supervised models.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3