RPocket: an intuitive database of RNA pocket topology information with RNA-ligand data resources

Author:

Zhou Ting,Wang Huiwen,Zeng Chen,Zhao YunjieORCID

Abstract

Abstract Background RNA regulates a variety of biological functions by interacting with other molecules. The ligand often binds in the RNA pocket to trigger structural changes or functions. Thus, it is essential to explore and visualize the RNA pocket to elucidate the structural and recognition mechanism for the RNA-ligand complex formation. Results In this work, we developed one user-friendly bioinformatics tool, RPocket. This database provides geometrical size, centroid, shape, secondary structure element for RNA pocket, RNA-ligand interaction information, and functional sites. We extracted 240 RNA pockets from 94 non-redundant RNA-ligand complex structures. We developed RPDescriptor to calculate the pocket geometrical property quantitatively. The geometrical information was then subjected to RNA-ligand binding analysis by incorporating the sequence, secondary structure, and geometrical combinations. This new approach takes advantage of both the atom-level precision of the structure and the nucleotide-level tertiary interactions. The results show that the higher-level topological pattern indeed improves the tertiary structure prediction. We also proposed a potential mechanism for RNA-ligand complex formation. The electrostatic interactions are responsible for long-range recognition, while the Van der Waals and hydrophobic contacts for short-range binding and optimization. These interaction pairs can be considered as distance constraints to guide complex structural modeling and drug design. Conclusion RPocket database would facilitate RNA-ligand engineering to regulate the complex formation for biological or medical applications. RPocket is available at http://zhaoserver.com.cn/RPocket/RPocket.html.

Funder

National Natural Science Foundation of China

national natural science foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3