Abstract
Abstract
Background
A recently proposed method for estimating qPCR amplification efficiency E analyzes fluorescence intensity ratios from pairs of points deemed to lie in the exponential growth region on the amplification curves for all reactions in a dilution series. This method suffers from a serious problem: The resulting ratios are highly correlated, as they involve multiple use of the raw data, for example, yielding ~ 250 E estimates from ~ 25 intensity readings. The resulting statistics for such estimates are falsely optimistic in their assessment of the estimation precision.
Results
Monte Carlo simulations confirm that the correlated pairs method yields precision estimates that are better than actual by a factor of two or more. This result is further supported by estimating E by both pairwise and Cq calibration methods for the 16 replicate datasets from the critiqued work, and then comparing the ensemble statistics for these methods.
Conclusion
Contrary to assertions in the proposing work, the pairwise method does not yield E estimates a factor of 2 more precise than estimates from Cq calibration fitting (the standard curve method). On the other hand, the statistically correct direct fit of the data to the model behind the pairwise method can yield E estimates of comparable precision. Ways in which the approach might be improved are discussed briefly.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology