Quantitative prediction model for affinity of drug–target interactions based on molecular vibrations and overall system of ligand-receptor

Author:

Wang Xian-rui,Cao Ting-ting,Jia Cong Min,Tian Xue-mei,Wang Yun

Abstract

Abstract Background The study of drug–target interactions (DTIs) affinity plays an important role in safety assessment and pharmacology. Currently, quantitative structure–activity relationship (QSAR) and molecular docking (MD) are most common methods in research of DTIs affinity. However, they often built for a specific target or several targets, and most QSAR and MD methods were based either on structure of drug molecules or on structure of receptors with low accuracy and small scope of application. How to construct quantitative prediction models with high accuracy and wide applicability remains a challenge. To this end, this paper screened molecular descriptors based on molecular vibrations and took molecule-target as a whole system to construct prediction models with high accuracy-wide applicability based on dissociation constant (Kd) and concentration for 50% of maximal effect (EC50), and to provide reference for quantifying affinity of DTIs. Results After comprehensive comparison, the results showed that RF models are optimal models to analyze and predict DTIs affinity with coefficients of determination (R2) are all greater than 0.94. Compared to the quantitative models reported in literatures, the RF models developed in this paper have higher accuracy and wide applicability. In addition, E-state molecular descriptors associated with molecular vibrations and normalized Moreau-Broto autocorrelation (G3), Moran autocorrelation (G4), transition-distribution (G7) protein descriptors are of higher importance in the quantification of DTIs. Conclusion Through screening molecular descriptors based on molecular vibrations and taking molecule-target as whole system, we obtained optimal models based on RF with more accurate-widely applicable, which indicated that selection of molecular descriptors associated with molecular vibrations and the use of molecular-target as whole system are reliable methods for improving performance of models. It can provide reference for quantifying affinity of DTIs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3