Mechanism-aware imputation: a two-step approach in handling missing values in metabolomics

Author:

Dekermanjian Jonathan P.,Shaddox Elin,Nandy Debmalya,Ghosh Debashis,Kechris Katerina

Abstract

AbstractWhen analyzing large datasets from high-throughput technologies, researchers often encounter missing quantitative measurements, which are particularly frequent in metabolomics datasets. Metabolomics, the comprehensive profiling of metabolite abundances, are typically measured using mass spectrometry technologies that often introduce missingness via multiple mechanisms: (1) the metabolite signal may be smaller than the instrument limit of detection; (2) the conditions under which the data are collected and processed may lead to missing values; (3) missing values can be introduced randomly. Missingness resulting from mechanism (1) would be classified as Missing Not At Random (MNAR), that from mechanism (2) would be Missing At Random (MAR), and that from mechanism (3) would be classified as Missing Completely At Random (MCAR). Two common approaches for handling missing data are the following: (1) omit missing data from the analysis; (2) impute the missing values. Both approaches may introduce bias and reduce statistical power in downstream analyses such as testing metabolite associations with clinical variables. Further, standard imputation methods in metabolomics often ignore the mechanisms causing missingness and inaccurately estimate missing values within a data set. We propose a mechanism-aware imputation algorithm that leverages a two-step approach in imputing missing values. First, we use a random forest classifier to classify the missing mechanism for each missing value in the data set. Second, we impute each missing value using imputation algorithms that are specific to the predicted missingness mechanism (i.e., MAR/MCAR or MNAR). Using complete data, we conducted simulations, where we imposed different missingness patterns within the data and tested the performance of combinations of imputation algorithms. Our proposed algorithm provided imputations closer to the original data than those using only one imputation algorithm for all the missing values. Consequently, our two-step approach was able to reduce bias for improved downstream analyses.

Funder

National Institutes of Health

Computational Bioscience NLM Training Grant

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3