multiWGCNA: an R package for deep mining gene co-expression networks in multi-trait expression data

Author:

Tommasini Dario,Fogel Brent L.ORCID

Abstract

Abstract Background Gene co-expression networks represent modules of genes with shared biological function, and have been widely used to model biological pathways in gene expression data. Co-expression networks associated with a specific trait can be constructed and identified using weighted gene co-expression network analysis (WGCNA), which is especially useful for the study of transcriptional signatures in disease. WGCNA networks are typically constructed using both disease and wildtype samples, so molecular pathways associated with disease are identified. However, it would be advantageous to study such co-expression networks in their disease context across spatiotemporal conditions, but currently there is no comprehensive software implementation for this type of analysis. Results Here, we introduce a WGCNA-based procedure, multiWGCNA, that is tailored to datasets with variable spatial or temporal traits. As well as constructing the combined network, multiWGCNA also generates a network for each condition separately, and subsequently maps these modules between and across designs, and performs relevant downstream analyses, including module-trait correlation and module preservation. When applied to astrocyte-specific RNA-sequencing (RNA-seq) data from various brain regions of mice with experimental autoimmune encephalitis, multiWGCNA resolved the de novo formation of the neurotoxic astrocyte transcriptional program exclusively in the disease setting. Using time-course RNA-seq from mice with tau pathology (rTg4510), we demonstrate how multiWGCNA can also be used to study the temporal evolution of pathological modules over the course of disease progression. Conclusion The multiWGCNA R package can be applied to expression data with two dimensions, which is especially useful for the study of disease-associated modules across time or space. The source code and functions are freely available at: https://github.com/fogellab/multiWGCNA.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3