GPrimer: a fast GPU-based pipeline for primer design for qPCR experiments

Author:

Bae Jeongmin,Jeon Hajin,Kim Min-SooORCID

Abstract

Abstract Background Design of valid high-quality primers is essential for qPCR experiments. MRPrimer is a powerful pipeline based on MapReduce that combines both primer design for target sequences and homology tests on off-target sequences. It takes an entire sequence DB as input and returns all feasible and valid primer pairs existing in the DB. Due to the effectiveness of primers designed by MRPrimer in qPCR analysis, it has been widely used for developing many online design tools and building primer databases. However, the computational speed of MRPrimer is too slow to deal with the sizes of sequence DBs growing exponentially and thus must be improved. Results We develop a fast GPU-based pipeline for primer design (GPrimer) that takes the same input and returns the same output with MRPrimer. MRPrimer consists of a total of seven MapReduce steps, among which two steps are very time-consuming. GPrimer significantly improves the speed of those two steps by exploiting the computational power of GPUs. In particular, it designs data structures for coalesced memory access in GPU and workload balancing among GPU threads and copies the data structures between main memory and GPU memory in a streaming fashion. For human RefSeq DB, GPrimer achieves a speedup of 57 times for the entire steps and a speedup of 557 times for the most time-consuming step using a single machine of 4 GPUs, compared with MRPrimer running on a cluster of six machines. Conclusions We propose a GPU-based pipeline for primer design that takes an entire sequence DB as input and returns all feasible and valid primer pairs existing in the DB at once without an additional step using BLAST-like tools. The software is available at https://github.com/qhtjrmin/GPrimer.git.

Funder

Ministry of Science, ICT and Future Planning

Ministry of Science and ICT

Institute for Information and Communications Technology Planning and Evaluation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3