Marker-controlled watershed with deep edge emphasis and optimized H-minima transform for automatic segmentation of densely cultivated 3D cell nuclei

Author:

Kaseva TuomasORCID,Omidali BaharehORCID,Hippeläinen EeroORCID,Mäkelä TeemuORCID,Wilppu Ulla,Sofiev Alexey,Merivaara ArtoORCID,Yliperttula MarjoORCID,Savolainen SauliORCID,Salli EeroORCID

Abstract

AbstractBackgroundThe segmentation of 3D cell nuclei is essential in many tasks, such as targeted molecular radiotherapies (MRT) for metastatic tumours, toxicity screening, and the observation of proliferating cells. In recent years, one popular method for automatic segmentation of nuclei has been deep learning enhanced marker-controlled watershed transform. In this method, convolutional neural networks (CNNs) have been used to create nuclei masks and markers, and the watershed algorithm for the instance segmentation. We studied whether this method could be improved for the segmentation of densely cultivated 3D nuclei via developing multiple system configurations in which we studied the effect of edge emphasizing CNNs, and optimized H-minima transform for mask and marker generation, respectively.ResultsThe dataset used for training and evaluation consisted of twelve in vitro cultivated densely packed 3D human carcinoma cell spheroids imaged using a confocal microscope. With this dataset, the evaluation was performed using a cross-validation scheme. In addition, four independent datasets were used for evaluation. The datasets were resampled near isotropic for our experiments. The baseline deep learning enhanced marker-controlled watershed obtained an average of 0.69 Panoptic Quality (PQ) and 0.66 Aggregated Jaccard Index (AJI) over the twelve spheroids. Using a system configuration, which was otherwise the same but used 3D-based edge emphasizing CNNs and optimized H-minima transform, the scores increased to 0.76 and 0.77, respectively. When using the independent datasets for evaluation, the best performing system configuration was shown to outperform or equal the baseline and a set of well-known cell segmentation approaches.ConclusionsThe use of edge emphasizing U-Nets and optimized H-minima transform can improve the marker-controlled watershed transform for segmentation of densely cultivated 3D cell nuclei. A novel dataset of twelve spheroids was introduced to the public.

Funder

Helsinki University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cancer Spheroid Segmentation Based on Vision Transformer;2023 IEEE International Conference on Visual Communications and Image Processing (VCIP);2023-12-04

2. Deep Learning Techniques for 3D-Volumetric Segmentation of Biomedical Images;Advances in Deep Generative Models for Medical Artificial Intelligence;2023

3. Stiffness-Controlled Hydrogels for 3D Cell Culture Models;Polymers;2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3