Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction

Author:

Liu Jiale,Gong Xinqi

Abstract

Abstract Background Recurrent neural network(RNN) is a good way to process sequential data, but the capability of RNN to compute long sequence data is inefficient. As a variant of RNN, long short term memory(LSTM) solved the problem in some extent. Here we improved LSTM for big data application in protein-protein interaction interface residue pairs prediction based on the following two reasons. On the one hand, there are some deficiencies in LSTM, such as shallow layers, gradient explosion or vanishing, etc. With a dramatic data increasing, the imbalance between algorithm innovation and big data processing has been more serious and urgent. On the other hand, protein-protein interaction interface residue pairs prediction is an important problem in biology, but the low prediction accuracy compels us to propose new computational methods. Results In order to surmount aforementioned problems of LSTM, we adopt the residual architecture and add attention mechanism to LSTM. In detail, we redefine the block, and add a connection from front to back in every two layers and attention mechanism to strengthen the capability of mining information. Then we use it to predict protein-protein interaction interface residue pairs, and acquire a quite good accuracy over 72%. What’s more, we compare our method with random experiments, PPiPP, standard LSTM, and some other machine learning methods. Our method shows better performance than the methods mentioned above. Conclusion We present an attention mechanism enhanced LSTM with residual architecture, and make deeper network without gradient vanishing or explosion to a certain extent. Then we apply it to a significant problem– protein-protein interaction interface residue pairs prediction and obtain a better accuracy than other methods. Our method provides a new approach for protein-protein interaction computation, which will be helpful for related biomedical researches.

Funder

National Natural Science Foundation of China

Beijing Advanced Innovation Center for Structral Biology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3