PIC-Me: paralogs and isoforms classifier based on machine-learning approaches

Author:

Oh Jooseong,Lee Sung-Gwon,Park Chungoo

Abstract

Abstract Background Paralogs formed through gene duplication and isoforms formed through alternative splicing have been important processes for increasing protein diversity and maintaining cellular homeostasis. Despite their recognized importance and the advent of large-scale genomic and transcriptomic analyses, paradoxically, accurate annotations of all gene loci to allow the identification of paralogs and isoforms remain surprisingly incomplete. In particular, the global analysis of the transcriptome of a non-model organism for which there is no reference genome is especially challenging. Results To reliably discriminate between the paralogs and isoforms in RNA-seq data, we redefined the pre-existing sequence features (sequence similarity, inverse count of consecutive identical or non-identical blocks, and match-mismatch fraction) previously derived from full-length cDNAs and EST sequences and described newly discovered genomic and transcriptomic features (twilight zone of protein sequence alignment and expression level difference). In addition, the effectiveness and relevance of the proposed features were verified with two widely used support vector machine (SVM) and random forest (RF) models. From nine RNA-seq datasets, all AUC (area under the curve) scores of ROC (receiver operating characteristic) curves were over 0.9 in the RF model and significantly higher than those in the SVM model. Conclusions In this study, using an RF model with five proposed RNA-seq features, we implemented our method called Paralogs and Isoforms Classifier based on Machine-learning approaches (PIC-Me) and showed that it outperformed an existing method. Finally, we envision that our tool will be a valuable computational resource for the genomics community to help with gene annotation and will aid in comparative transcriptomics and evolutionary genomics studies, especially those on non-model organisms.

Funder

Ministry of Science

Ministry of Education

the Ministry of Oceans and Fisheries

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3