Identification of essential proteins based on edge features and the fusion of multiple-source biological information

Author:

Liu Peiqiang,Liu Chang,Mao Yanyan,Guo Junhong,Liu Fanshu,Cai Wangmin,Zhao Feng

Abstract

Abstract Background A major current focus in the analysis of protein–protein interaction (PPI) data is how to identify essential proteins. As massive PPI data are available, this warrants the design of efficient computing methods for identifying essential proteins. Previous studies have achieved considerable performance. However, as a consequence of the features of high noise and structural complexity in PPIs, it is still a challenge to further upgrade the performance of the identification methods. Methods This paper proposes an identification method, named CTF, which identifies essential proteins based on edge features including h-quasi-cliques and uv-triangle graphs and the fusion of multiple-source information. We first design an edge-weight function, named EWCT, for computing the topological scores of proteins based on quasi-cliques and triangle graphs. Then, we generate an edge-weighted PPI network using EWCT and dynamic PPI data. Finally, we compute the essentiality of proteins by the fusion of topological scores and three scores of biological information. Results We evaluated the performance of the CTF method by comparison with 16 other methods, such as MON, PeC, TEGS, and LBCC, the experiment results on three datasets of Saccharomyces cerevisiae show that CTF outperforms the state-of-the-art methods. Moreover, our method indicates that the fusion of other biological information is beneficial to improve the accuracy of identification.

Funder

Education Quality Improvement Plan for Graduate Students of Shandong Province, China

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3