Author:
Liang Bilin,Gong Haifan,Lu Lu,Xu Jie
Abstract
Abstract
Background
Pathway-based analysis of transcriptomic data has shown greater stability and better performance than traditional gene-based analysis. Until now, some pathway-based deep learning models have been developed for bioinformatic analysis, but these models have not fully considered the topological features of pathways, which limits the performance of the final prediction result.
Results
To address this issue, we propose a novel model, called PathGNN, which constructs a Graph Neural Networks (GNNs) model that can capture topological features of pathways. As a case, PathGNN was applied to predict long-term survival of four types of cancer and achieved promising predictive performance when compared to other common methods. Furthermore, the adoption of an interpretation algorithm enabled the identification of plausible pathways associated with survival.
Conclusion
PathGNN demonstrates that GNN can be effectively applied to build a pathway-based model, resulting in promising predictive power.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献