Automated classification of protein expression levels in immunohistochemistry images to improve the detection of cancer biomarkers

Author:

Xue Zhen-Zhen,Li Cheng,Luo Zhuo-Ming,Wang Shan-Shan,Xu Ying-Ying

Abstract

Abstract Background The expression changes of some proteins are associated with cancer progression, and can be used as biomarkers in cancer diagnosis. Automated systems have been frequently applied in the large-scale detection of protein biomarkers and have provided a valuable complement for wet-laboratory experiments. For example, our previous work used an immunohistochemical image-based machine learning classifier of protein subcellular locations to screen biomarker proteins that change locations in colon cancer tissues. The tool could recognize the location of biomarkers but did not consider the effect of protein expression level changes on the screening process. Results In this study, we built an automated classification model that recognizes protein expression levels in immunohistochemical images, and used the protein expression levels in combination with subcellular locations to screen cancer biomarkers. To minimize the effect of non-informative sections on the immunohistochemical images, we employed the representative image patches as input and applied a Wasserstein distance method to determine the number of patches. For the patches and the whole images, we compared the ability of color features, characteristic curve features, and deep convolutional neural network features to distinguish different levels of protein expression and employed deep learning and conventional classification models. Experimental results showed that the best classifier can achieve an accuracy of 73.72% and an F1-score of 0.6343. In the screening of protein biomarkers, the detection accuracy improved from 63.64 to 95.45% upon the incorporation of the protein expression changes. Conclusions Machine learning can distinguish different protein expression levels and speed up their annotation in the future. Combining information on the expression patterns and subcellular locations of protein can improve the accuracy of automatic cancer biomarker screening. This work could be useful in discovering new cancer biomarkers for clinical diagnosis and research.

Funder

National Natural Science Foundation of China

Science and Technology Projects in Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3