Author:
Liang Ying,Wu Yanan,Zhang Zequn,Liu Niannian,Peng Jun,Tang Jianjun
Abstract
Abstract
Background
DNA N4-methylcytosine is part of the restrictive modification system, which works by regulating some biological processes, for example, the initiation of DNA replication, mismatch repair and inactivation of transposon. However, using experimental methods to detect 4mC sites is time-consuming and expensive. Besides, considering the huge differences in the number of 4mC samples among different species, it is challenging to achieve a robust multi-species 4mC site prediction performance. Hence, it is of great significance to develop effective computational tools to identify 4mC sites.
Results
This work proposes a flexible deep learning-based framework to predict 4mC sites, called Hyb4mC. Hyb4mC adopts the DNA2vec method for sequence embedding, which captures more efficient and comprehensive information compared with the sequence-based feature method. Then, two different subnets are used for further analysis: Hyb_Caps and Hyb_Conv. Hyb_Caps is composed of a capsule neural network and can generalize from fewer samples. Hyb_Conv combines the attention mechanism with a text convolutional neural network for further feature learning.
Conclusions
Extensive benchmark tests have shown that Hyb4mC can significantly enhance the performance of predicting 4mC sites compared with the recently proposed methods.
Funder
National Nature Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献