ki67 nuclei detection and ki67-index estimation: a novel automatic approach based on human vision modeling

Author:

Barricelli Barbara Rita,Casiraghi ElenaORCID,Gliozzo Jessica,Huber Veronica,Leone Biagio Eugenio,Rizzi Alessandro,Vergani Barbara

Abstract

Abstract Background The protein ki67 (pki67) is a marker of tumor aggressiveness, and its expression has been proven to be useful in the prognostic and predictive evaluation of several types of tumors. To numerically quantify the pki67 presence in cancerous tissue areas, pathologists generally analyze histochemical images to count the number of tumor nuclei marked for pki67. This allows estimating the ki67-index, that is the percentage of tumor nuclei positive for pki67 over all the tumor nuclei. Given the high image resolution and dimensions, its estimation by expert clinicians is particularly laborious and time consuming. Though automatic cell counting techniques have been presented so far, the problem is still open. Results In this paper we present a novel automatic approach for the estimations of the ki67-index. The method starts by exploiting the STRESS algorithm to produce a color enhanced image where all pixels belonging to nuclei are easily identified by thresholding, and then separated into positive (i.e. pixels belonging to nuclei marked for pki67) and negative by a binary classification tree. Next, positive and negative nuclei pixels are processed separately by two multiscale procedures identifying isolated nuclei and separating adjoining nuclei. The multiscale procedures exploit two Bayesian classification trees to recognize positive and negative nuclei-shaped regions. Conclusions The evaluation of the computed results, both through experts’ visual assessments and through the comparison of the computed indexes with those of experts, proved that the prototype is promising, so that experts believe in its potential as a tool to be exploited in the clinical practice as a valid aid for clinicians estimating the ki67-index. The MATLAB source code is open source for research purposes.

Funder

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3