DeepWalk based method to predict lncRNA-miRNA associations via lncRNA-miRNA-disease-protein-drug graph

Author:

Yang Long,Li Li-Ping,Yi Hai-Cheng

Abstract

Abstract Background Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes and have been confirmed to be concerned with various diseases. Largely uncharacterized of the physiological role and functions of lncRNA remains. MicroRNAs (miRNAs), which are usually 20–24 nucleotides, have several critical regulatory parts in cells. LncRNA can be regarded as a sponge to adsorb miRNA and indirectly regulate transcription and translation. Thus, the identification of lncRNA-miRNA associations is essential and valuable. Results In our work, we present DWLMI to infer the potential associations between lncRNAs and miRNAs by representing them as vectors via a lncRNA-miRNA-disease-protein-drug graph. Specifically, DeepWalk can be used to learn the behavior representation of vertices. The methods of fingerprint, k-mer and MeSH descriptors were mainly used to learn the attribute representation of vertices. By combining the above two kinds of information, unknown lncRNA-miRNA associations can be predicted by the random forest classifier. Under the five-fold cross-validation, the proposed DWLMI model obtained an average prediction accuracy of 95.22% with a sensitivity of 94.35% at the AUC of 98.56%. Conclusions The experimental results demonstrated that DWLMI can effectively predict the potential lncRNA-miRNA associated pairs, and the results can provide a new insight for related non-coding RNA researchers in the field of combing biology big data with deep learning.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3