PyConvU-Net: a lightweight and multiscale network for biomedical image segmentation

Author:

Li Changyong,Fan Yongxian,Cai Xiaodong

Abstract

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive survey of deep learning-based lightweight object detection models for edge devices;Artificial Intelligence Review;2024-08-10

2. LMBiS-Net: A lightweight bidirectional skip connection based multipath CNN for retinal blood vessel segmentation;Scientific Reports;2024-07-02

3. An Efficient and Rapid Medical Image Segmentation Network;IEEE Journal of Biomedical and Health Informatics;2024-05

4. Enhancing AI-CDSS with U-AnoGAN: Tackling data imbalance;Computer Methods and Programs in Biomedicine;2024-02

5. Feature Enhancer Segmentation Network (FES-Net)for Vessel Segmentation;2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3