Abstract
Abstract
Background
Logic Learning Machine (LLM) is an innovative method of supervised analysis capable of constructing models based on simple and intelligible rules.
In this investigation the performance of LLM in classifying patients with cancer was evaluated using a set of eight publicly available gene expression databases for cancer diagnosis.
LLM accuracy was assessed by summary ROC curve (sROC) analysis and estimated by the area under an sROC curve (sAUC). Its performance was compared in cross validation with that of standard supervised methods, namely: decision tree, artificial neural network, support vector machine (SVM) and k-nearest neighbor classifier.
Results
LLM showed an excellent accuracy (sAUC = 0.99, 95%CI: 0.98–1.0) and outperformed any other method except SVM.
Conclusions
LLM is a new powerful tool for the analysis of gene expression data for cancer diagnosis. Simple rules generated by LLM could contribute to a better understanding of cancer biology, potentially addressing therapeutic approaches.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献