Analyzing gene expression data for pediatric and adult cancer diagnosis using logic learning machine and standard supervised methods

Author:

Verda Damiano,Parodi Stefano,Ferrari Enrico,Muselli MarcoORCID

Abstract

Abstract Background Logic Learning Machine (LLM) is an innovative method of supervised analysis capable of constructing models based on simple and intelligible rules. In this investigation the performance of LLM in classifying patients with cancer was evaluated using a set of eight publicly available gene expression databases for cancer diagnosis. LLM accuracy was assessed by summary ROC curve (sROC) analysis and estimated by the area under an sROC curve (sAUC). Its performance was compared in cross validation with that of standard supervised methods, namely: decision tree, artificial neural network, support vector machine (SVM) and k-nearest neighbor classifier. Results LLM showed an excellent accuracy (sAUC = 0.99, 95%CI: 0.98–1.0) and outperformed any other method except SVM. Conclusions LLM is a new powerful tool for the analysis of gene expression data for cancer diagnosis. Simple rules generated by LLM could contribute to a better understanding of cancer biology, potentially addressing therapeutic approaches.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3