Using neural networks to support high-quality evidence mapping

Author:

Røst Thomas B.ORCID,Slaughter Laura,Nytrø Øystein,Muller Ashley E.,Vist Gunn E.

Abstract

Abstract Background The Living Evidence Map Project at the Norwegian Institute of Public Health (NIPH) gives an updated overview of research results and publications. As part of NIPH’s mandate to inform evidence-based infection prevention, control and treatment, a large group of experts are continously monitoring, assessing, coding and summarising new COVID-19 publications. Screening tools, coding practice and workflow are incrementally improved, but remain largely manual. Results This paper describes how deep learning methods have been employed to learn classification and coding from the steadily growing NIPH COVID-19 dashboard data, so as to aid manual classification, screening and preprocessing of the rapidly growing influx of new papers on the subject. Our main objective is to make manual screening scalable through semi-automation, while ensuring high-quality Evidence Map content. Conclusions We report early results on classifying publication topic and type from titles and abstracts, showing that even simple neural network architectures and text representations can yield acceptable performance.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference27 articles.

1. Glasziou PP, Sanders S, Hoffmann T. Waste in covid-19 research. BMJ. 2020. https://doi.org/10.1136/bmj.m1847.

2. Norwegian Institute of Public Health. A systematic and living evidence map on COVID-19; 2020. https://www.fhi.no/contentassets/e64790be5d3b4c4abe1f1be25fc862ce/covid-19-evidence-map-protocol-20200403.pdf. Accessed 26 Mar 2021.

3. OMara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S. Using text mining for study identification in systematic reviews: a systematic review of current approaches. Syst Rev. 2015;4(1):5.

4. Wang LL, Lo K, Chandrasekhar Y, Reas R, Yang J, Eide D, Funk K, Kinney R, Liu Z, Merrill W, Mooney P, Murdick D, Rishi D, Sheehan J, Shen Z, Stilson B, Wade AD, Wang K, Wilhelm C, Xie B, Raymond D, Weld DS, Etzioni O, Kohlmeier S. Cord-19: the covid-19 open research dataset. 2020. arXiv:2004.10706.

5. Oakley A, Gough D, Oliver S, Thomas J. The politics of evidence and methodology: lessons from the EPPI-Centre. Evid Policy: J Res Debate Pract. 2005;1(1):5–32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3