On the correspondence between the transcriptomic response of a compound and its effects on its targets

Author:

Engler Hart Chloe,Ence Daniel,Healey David,Domingo-Fernández Daniel

Abstract

AbstractBetter understanding the transcriptomic response produced by a compound perturbing its targets can shed light on the underlying biological processes regulated by the compound. However, establishing the relationship between the induced transcriptomic response and the target of a compound is non-trivial, partly because targets are rarely differentially expressed. Therefore, connecting both modalities requires orthogonal information (e.g., pathway or functional information). Here, we present a comprehensive study aimed at exploring this relationship by leveraging thousands of transcriptomic experiments and target data for over 2000 compounds. Firstly, we confirm that compound-target information does not correlate as expected with the transcriptomic signatures induced by a compound. However, we reveal how the concordance between both modalities increases by connecting pathway and target information. Additionally, we investigate whether compounds that target the same proteins induce a similar transcriptomic response and conversely, whether compounds with similar transcriptomic responses share the same target proteins. While our findings suggest that this is generally not the case, we did observe that compounds with similar transcriptomic profiles are more likely to share at least one protein target and common therapeutic applications. Finally, we demonstrate how to exploit the relationship between both modalities for mechanism of action deconvolution by presenting a case scenario involving a few compound pairs with high similarity.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3