A stack LSTM structure for decoding continuous force from local field potential signal of primary motor cortex (M1)

Author:

Kashefi Mehrdad,Daliri Mohammad RezaORCID

Abstract

Abstract Background Brain Computer Interfaces (BCIs) translate the activity of the nervous system to a control signal which is interpretable for an external device. Using continuous motor BCIs, the user will be able to control a robotic arm or a disabled limb continuously. In addition to decoding the target position, accurate decoding of force amplitude is essential for designing BCI systems capable of performing fine movements like grasping. In this study, we proposed a stack Long Short-Term Memory (LSTM) neural network which was able to accurately predict the force amplitude applied by three freely moving rats using their Local Field Potential (LFP) signal. Results The performance of the network was compared with the Partial Least Square (PLS) method. The average coefficient of correlation (r) for three rats were 0.67 in PLS and 0.73 in LSTM based network and the coefficient of determination ($$R^{2}$$ R 2 ) were 0.45 and 0.54 for PLS and LSTM based network, respectively. The network was able to accurately decode the force values without explicitly using time lags in the input features. Additionally, the proposed method was able to predict zero-force values very accurately due to benefiting from an output nonlinearity. Conclusion The proposed stack LSTM structure was able to predict applied force from the LFP signal accurately. In addition to higher accuracy, these results were achieved without explicitly using time lags in input features which can lead to more accurate and faster BCI systems.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3