C3: connect separate connected components to form a succinct disease module

Author:

Wang BingboORCID,Hu Jie,Wang Yajun,Zhang Chenxing,Zhou Yuanjun,Yu Liang,Guo Xingli,Gao Lin,Chen Yunru

Abstract

Abstract Background Precise disease module is conducive to understanding the molecular mechanism of disease causation and identifying drug targets. However, due to the fragmentization of disease module in incomplete human interactome, how to determine connectivity pattern and detect a complete neighbourhood of disease based on this is still an open question. Results In this paper, we perform exploratory analysis leading to an important observation that through a few intermediate nodes, most separate connected components formed by disease-associated proteins can be effectively connected and eventually form a complete disease module. And based on the topological properties of these intermediate nodes, we propose a connect separate connected components (C3) method to detect a succinct disease module by introducing a relatively small number of intermediate nodes, which allows us to obtain more pure disease module than other methods. Then we apply C3 across a large corpus of diseases to validate this connectivity pattern of disease module. Furthermore, the connectivity of the perturbed genes in multi-omics data such as The Cancer Genome Atlas also fits this pattern. Conclusions C3 tool is not only useful in detecting a clearly-defined connected disease neighbourhood of 299 diseases and cancer with multi-omics data, but also helpful in better understanding the interconnection of phenotypically related genes in different omics data and studying complex pathological processes.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3