Identifying genes associated with brain volumetric differences through tissue specific transcriptomic inference from GWAS summary data

Author:

Mai Hung,Bao Jingxuan,Thompson Paul M.,Kim Dokyoon,Shen LiORCID

Abstract

Abstract Background Brain volume has been widely studied in the neuroimaging field, since it is an important and heritable trait associated with brain development, aging and various neurological and psychiatric disorders. Genome-wide association studies (GWAS) have successfully identified numerous associations between genetic variants such as single nucleotide polymorphisms and complex traits like brain volume. However, it is unclear how these genetic variations influence regional gene expression levels, which may subsequently lead to phenotypic changes. S-PrediXcan is a tissue-specific transcriptomic data analysis method that can be applied to bridge this gap. In this work, we perform an S-PrediXcan analysis on GWAS summary data from two large imaging genetics initiatives, the UK Biobank and Enhancing Neuroimaging Genetics through Meta Analysis, to identify tissue-specific transcriptomic effects on two closely related brain volume measures: total brain volume (TBV) and intracranial volume (ICV). Results As a result of the analysis, we identified 10 genes that are highly associated with both TBV and ICV. Nine out of 10 genes were found to be associated with TBV in another study using a different gene-based association analysis. Moreover, most of our discovered genes were also found to be correlated with multiple cognitive and behavioral traits. Further analyses revealed the protein–protein interactions, associated molecular pathways and biological functions that offer insight into how these genes function and interact with others. Conclusions These results confirm that S-PrediXcan can identify genes with tissue-specific transcriptomic effects on complex traits. The analysis also suggested novel genes whose expression levels are related to brain volumetric traits. This provides important insights into the genetic mechanisms of the human brain.

Funder

U.S. National Library of Medicine

National Institute on Aging

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3